Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300U10-1

TUESDAY, 2 NOVEMBER 2021 – MORNING

MATHEMATICS – Component 1

Non-Calculator Mathematics FOUNDATION TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

Question Maximum Mark Awarded Mark Awarded 1. 8 2. 5 3. 2 4. 5 5. 4 6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3 Total 120	For Examiner's use only								
2. 5 3. 2 4. 5 5. 4 6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	Question								
3. 2 4. 5 5. 4 6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	1.	8							
4. 5 5. 4 6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	2.	5							
5. 4 6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	3.	2							
6. 4 7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5	4.	5							
7. 3 8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5	5.	4							
8. 4 9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	6.	4							
9. 4 10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	7.	3							
10. 4 11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	8.	4							
11. 4 12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	9.	4							
12. 11 13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	10.	4							
13. 9 14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	11.	4							
14. 7 15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	12.	11							
15. 7 16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	13.	9							
16. 4 17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	14.	7							
17. 4 18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	15.	7							
18. 2 19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	16.	4							
19. 4 20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	17.	4							
20. 5 21. 4 22. 4 23. 4 24. 5 25. 3	18.	2							
21. 4 22. 4 23. 4 24. 5 25. 3	19.	4							
22. 4 23. 4 24. 5 25. 3	20.	5							
23. 4 24. 5 25. 3	21.	4							
24. 5 25. 3	22.	4							
25. 3	23.	4							
	24.	5							
Total 120	25.	3							
	Total	120							

© WJEC CBAC Ltd.

CJ*(A21-C300U10-1)

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when t = 0 and t is time taken:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

© WJEC CBAC Ltd.

l.	(a)		2	3	8	16	20	24	29	E	Examiner only
		From	the numbers	s in the lis	t above, v	vrite down					
		(i)	a square nu	mber,	16					[1]	
		(ii)	the smalles	t prime nu	ımber. 2					[1]	
	(b)	(i)	Work out 4:	20 + 85. 20						[1]	
			······································	85		420-					
			<u></u>	05							
		(ii)	Work out 0		0.	•5				[1]	
	(c)	Write	e 17% as a fra	action.	17					[1]	
	(d)	Write Start	e the following with the larg	g values ir est.	n order.					[1]	
				-2	0	-5	0.03				
			O·D] Largest		0	- 1	2	- 5			
	(e)	Worl	cout $\frac{6 \times 40}{12}$		(/) ([2]	
				<u>J</u>	5 × 4 1	<u> </u>	1 × 40	= 20			
					1/2						

© WJEC CBAC Ltd.

(C300U10-1)

[1]

_				_			_			
2.	Samad	asks	a group	of:	120	football	fans	the	following	question.

"What type of football matches do you enjoy watching most?"

The pictogram shows his results.

League	$\bigotimes \bigotimes \bigotimes \bigotimes$	44
FA Cup	$\bigotimes \bigotimes$	24
European Championships	\bigcirc	12
World Cup	$\bigotimes \bigotimes \boxtimes \triangle$	40

Key		represents 12 fans
-----	--	--------------------

(a) How many more football fans answered League than answered FA Cup?

44-24 = 20

- (b) A football fan is chosen at random from Samad's group of 120.
 - (i) On the probability scale below, mark with an arrow the probability that this football fan answered European Championships. |2/|20 = |1/|0 [2]

© WJEC CBAC Ltd.

Work out the probability that the football fan answered World Cup. (ii) Give your answer as a fraction in its simplest form.

[2]

40 120

3. Circle the equation. (a)

[1]

$$3x = 6$$

$$x \leq 5$$

$$x \le 5$$
 $x \ne 2$

$$5x + 7$$

Circle the expression that means '4 lots of n'.

[1]

$$4 + n$$

$$n \times n \times n \times n$$

$$n = 4$$

$$n \div 4$$

© WJEC CBAC Ltd.

(C300U10-1)

Examiner

only

Joni is buying a Silver Twist carpet. She needs to buy 30 m² and have it delivered. Joni wants to pay the lowest total price possible. She chooses from these two local shops. Supadeal Carpets Rugs to Go 50% off marked price Local delivery £25 Always low prices Free local delivery Silver Twist Silver Twist £24 per m² £13 per m² From which shop should she buy her carpet and how much will she save by choosing this shop? You must show all your working. : 30×12 = 360 30 × 10 = 300 30×2=60 360+25= £385 Rugs to go: 30x 13 = £390 Supuded, £5 cheaper She should buy from Supadeal

© WJEC CBAC Ltd.

The diagram shows an equilateral triangle, PQR, inside a rectangle, PSTU.
 Q is on side PS of the rectangle.

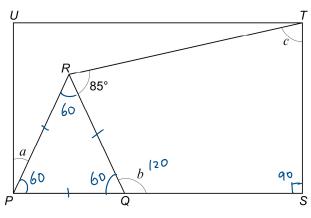
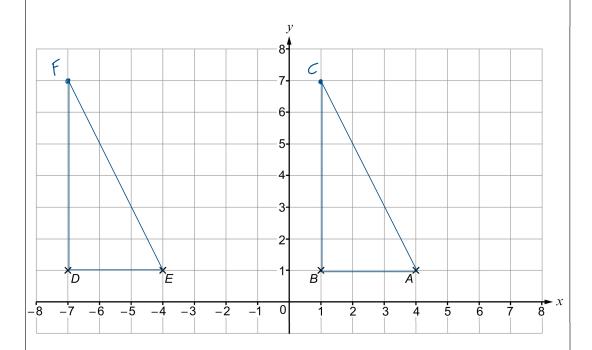


Diagram not drawn to scale

Calculate the size of each of the angles, \emph{a} , \emph{b} and \emph{c} .

[4]


$$= 360-295$$
 $= 65^{\circ}$
 $= 295$

© WJEC CBAC Ltd.

(C300U10-1)

6. The points A, B, D and E have been marked on the 1 cm grid below.

(a) Write down the coordinates of E.

I.

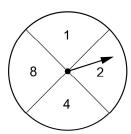
- (b) (i) ABC is a triangle with the following properties.
 - Angle ABC is a right angle.
 - The length of BC is twice the length of AB.

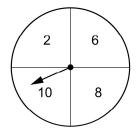
Mark and label the position of *C* on the grid.

[2]

[1]

(ii) D and E are two vertices of a triangle DEF. Triangle DEF is congruent to triangle ABC.


Mark and label the position of *F* on the grid.


[1]

© WJEC CBAC Ltd.

7. Maria is playing a game with two fair spinners. She spins each spinner once.

She adds the two scores together.

(a) Complete the diagram to show all the possible totals.

[1]

			Spinner 2					
		+	2	6	8	10		
	Spinner 1	1	3	7	9 (11)		
		2	4	8	10 ((12)		
		4	6	10	(12)	(14)		
		8	10	(14)	(6)	18)		

(b) Maria wins the game when the total is 10 or less.

What is the probability that Maria does not win the game?

[2]

(C300U10-1)

Turn over.

© WJEC CBAC Ltd.

8. Put one pair of brackets in each calculation to make it correct. (a)

(i) $3 \times (4 + 1) \times 2 = 30$

[1] 3 x 5 x 2

(ii) $(50 - 36) \div 2 \times 3 = 21$ [1]

14 -2 ×3

7 x 3

(b) Callum is working out $(41 - 29.5)^2$.

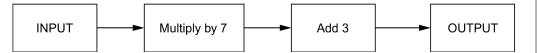
He estimates the answer to be 700.

Is Callum's answer a good estimate?

Yes

Show how you decide.

[2]


° ~ (40-30)

= 102

= 100

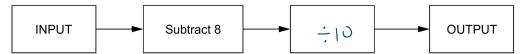
9. (a) Here is a number machine.

(i) The input is 6. What is the output?

[1]

 $6 \times 7 = 42$

42 +3 = 45


(ii) The input is 2*x*. Write an expression for the output. Simplify your answer.

[2]

2x x7 = 14x

14x+3

(b) Here is a different number machine.

When the input is 12 the output is 0.4.

Complete the number machine. You must use multiplication or division.

[1]

2 - 8 = 4

7 0.4

÷IO

(C300U10-1)

- 10. Katy uses the following rule for cooking frozen fish. (a)
 - Measure the fish in cm at its thickest point.
 - Cook frozen fish for 8 minutes per cm.
 - Turn the fish over halfway through the cooking time.

Thickest point (in cm)

Katy cooks a piece of frozen fish that measures 3 cm at its thickest point.

After how many minutes should Katy turn her piece of fish over?

[2]

8 x 3 = 24 mins

flip at 24-2= 12 mins

- Sajid uses the following rule for cooking fresh fish.
 - Measure the fish in cm at its thickest point.
 - Cook fresh fish for 4 minutes per cm.
 - Add an extra 5 minutes to the cooking time for fish wrapped in foil.

Sajid cooks a piece of fresh fish that he has wrapped in foil. He uses the rule and cooks his fish for a total of 31 minutes.

How thick was Sajid's fish at its thickest point before he cooked it?

450 + 5 = 31

4 SL = 26 -4 -4 2c=6.5cm 6.5cm

© WJEC CBAC Ltd.

11. (a) £125 is invested at a fixed percentage rate of simple interest. In 3 years it earns £9 simple interest.

How many years in total will it take to earn £36 simple interest?

[1]

.....l2 years

Jim invested £20000 in Lulu's business.

Lulu agreed to pay Jim a fixed percentage rate of simple interest each year on his investment.

At the end of 5 years, Lulu had paid Jim a total of £4000 in interest payments.

What yearly rate of simple interest did Lulu agree to pay?

[3]

4000-5 = 800

4 %

© WJEC CBAC Ltd.

(C300U10-1)

12. (a) The table shows the standard prices per night at the Cliff Hotel for 2022.

Dates	Double Plus Room (1 or 2 adults plus	Family Room (4 or 5 people)			
Dates	no more than one child)	Each adult	Each child		
01 Mar – 31 May	£117	£63	£8		
01 Jun – 31 Aug	£160	£80	£12		
01 Sep – 30 Nov	£105	£57	£7		

The hotel website states:

- a child must be 17 years old or less,
- a person aged 18 or more must pay the adult rate,
- a **single adult** in a double plus room pays $\frac{3}{4}$ of the standard price per night.

Mr and Mrs King are making a booking for one night in August 2022. They will be taking their two sons, William aged 11 and Henry aged 20.

Mr and Mrs King are going to book either

- one double plus room for themselves and William and one double plus room for Henry, or
- one family room for all 4 of them.

How much **more** will it cost the King family to stay for the night in two double plus rooms than it will if they stay in a family room?

You must show all your working.

[5]

1wo	doubles	=	160	+	3/4 0	F 160	16-4=4
1			160				
		= ,	£280	>			

=	240+12		
=		286	
		- 2 52	

_	2	

£ 28 more

- (b) In March 2020, the King family went on holiday to New Delhi, India.
 - (i) When their flight took off from London, it was 14:55 in New Delhi. The duration of the flight was 8 hours 10 minutes.

What was the time in New Delhi when their flight arrived?

[2]

14:55 + 8hrs -> 22:5

+10 mins

= 23:05

(ii) Flights from New Delhi back to London take a different route.

The King family's flight was due to take off from New Delhi at 11:05, New Delhi time, on 21st March.

It was due to arrive in London at 15:20, London time, on 21st March. New Delhi time is 5 hours 30 minutes ahead of London time.

What was the duration of their flight?

You may assume the flight took off and landed on time.

[3]

11:03	12:00	15: 0 ⁰	55+20=75
+ 55	+ 3:00	+ 20	= Thr Ismin
12:00	15:00	15:20	Total = 4hr 15mins

4 hrs 15 + Shr 30 = 9hr 45 mins

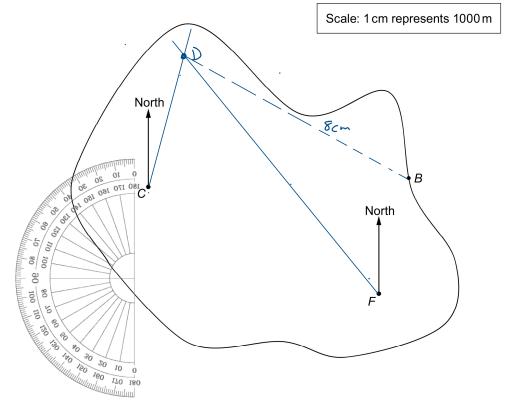
Duration of flight

(iii) The assumption in part (ii) was incorrect.

The flight took off 10 minutes late and landed in London before 15:20.

How does this affect your answer to part (ii)?

[1]


The flight took less than 9hr 45min

© WJEC CBAC Ltd.

(C300U10-1)

[3]

13. (a) The scale drawing shows the positions of a beach café (B), a church (C) and a farmhouse (F) on an island.

Don's house is on a bearing of 015° from the church (C) and on a bearing of 320° from the farmhouse (F).

- i) Mark the position of Don's house (D) on the diagram.
- (ii) Work out the shortest distance in metres from Don's house (D) to the beach café (B).

8 x 1000 = 8000

8000 metres

© WJEC CBAC Ltd.

(b) During the holiday season, a boat brings people to a point on the island.

Don drives a minibus taking people from the boat to the beach café.

Don's minibus has seats for 16 passengers. He makes 3 trips every 2 hours from the boat to the beach café.

He starts work at the boat at 10 a.m. and finishes at 5 p.m.

His lunchtime lasts for 1 hour.

What is the greatest number of people Don can take from the boat to the beach café each day?

You must show all your working.

[4]

10 am ->		=	/ / /	\	
	•		-1 h-	(lunch)	
 		•			

6hrs -7 3 x 2hrs

16	16 x 9 = 144 people	
9		

14 4

© WJEC CBAC Ltd.

(C300U10-1)

iter the cours he distance-t	e, they all tra me graph sh				ney.		
ance travelled	from medica	al centre (k	m)				
2.5							
2							
1.5	P/	,,' 'Q					
1/							
0.5	/ /						
0 / / 15:30	<i>IS</i> ∶40	B:50	16:00	16:10	16:20	16:30	
			Т	ime			
a) Alf rode	his bicycle a	nd Nicky w	alked hom	e			
				Q, is more li	kely to repro	esent Nick	xy's journey
	Р		C				
	how you dec		ep, t	here s	lower		[1]

© WJEC CBAC Ltd.

Harriet waited 10 minutes at a bus stop outside the medical centre and then caught the (b) bus home. After 5 minutes, the bus stopped in a traffic jam 0.5 km from the medical centre for 12 minutes. The bus then travelled directly to Harriet's village. Harriet got off the bus at a stop in her village 1.5 km from the medical centre. Harriet was on the bus for a total of 20 minutes. 20 - (5+12) = 3Draw Harriet's bus journey on the distance-time graph. [3] (ii) Harriet got off the bus and then walked 0.5 km to her house. She walked at a speed of 2 km per hour. How many minutes did it take Harriet to walk home from the bus stop? [2] = 0.5 = 5 = 0.25 = 1/4 h1/4 of 60 = 15 mins | S minutes (iii) Harriet lives further from the medical centre than Alf and Nicky. Complete Harriet's journey home on the distance-time graph. [1]

© WJEC CBAC Ltd. (C300U10-1) Turn over.

		20							
15.	Wher	n they were students, Paige and Anja had part-time jobs.	Examine only						
	(a)	One week, Paige earned £51 at a rate of £8.50 per hour.							
		For how many hours did Paige work? [2]							
		8-5 17 0							
		8.5 + 17 @ 6 hrs							
		17 17 4							
		5							
		2							
	(b)	Anja worked as a carer at weekends. Her rate of pay for the daytime was £12 per hour. Her rate of pay for the night-time was £9 per hour.							
		(i) How much did Anja earn for working 20 daytime hours and 10 night-time hours?							
		$(20\times12) + (10\times9)$							
		= 240 + 90							
		= <u></u> £330							
		(ii) Last weekend, her total daytime pay and her total night-time pay were in the ratio							
		total daytime pay : total night-time pay = 4 : 1.							
		She earned a total of £360.							
		How many night-time hours did she work last weekend? [3]							
		4+1=5 5 3 3610							
		360 - 5 = 72							
		d : n							
		×n (4 : 1) ×72							
		£72 72-9=8							
		8 hrs							
		0 1/1 -							

© WJEC CBAC Ltd.

- **16.** One evening all the members of a craft club either paint, sew or knit. Each member takes part in only one activity.
 - $\frac{1}{3}$ of the members paint.
 - $\frac{2}{5}$ of the members sew.
 - The remaining members all knit.

That evening, 33 of the members either **paint** or **sew**.

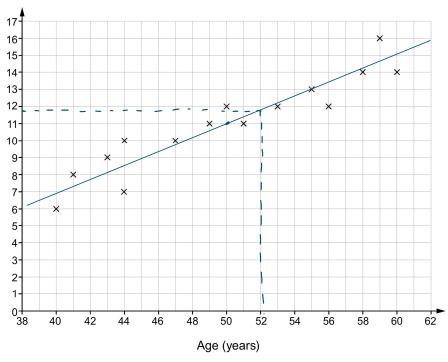
How many members does the craft club have in total?

[4]

	1 1	- 2							
/	3								
*, (5	+ 6	ر _				people		
	15	15		١٥	,)÷1[
				1	_ >	3	people	2	

total = 3	1 x 15
	Sugark

© WJEC CBAC Ltd. (C300U10-1) Turn over.


17. Fifteen people aged between 40 and 60 take an eye test as part of an experiment.

The test involves reading letters from a chart. Each line of letters is smaller than the line above. Letter size is measured in points.

The scatter graph below shows the age of and the smallest letter size read by each person.

Letter size (points)

© WJEC CBAC Ltd.

The mean age is 50 years and the mean letter size is 11 points. Using this information, draw a line of best fit on the scatter graph. [2] Use the scatter graph to answer each of the following questions. (i) Estimate the smallest letter size which can be read by a person aged 52. [1] [1] [1] [1] [1] [1] [1] [1
Use the scatter graph to answer each of the following questions. (i) Estimate the smallest letter size which can be read by a person aged 52. [1] 1 7 (ii) Jared is 30 years old. Should the scatter graph be used to estimate the smallest letter size that Jared car read? Yes No Give a reason for your answer. Data only exists down to 40. To extrapolate down to 30 assuming the same freed would
(ii) Estimate the smallest letter size which can be read by a person aged 52. [1] (iii) Jared is 30 years old. Should the scatter graph be used to estimate the smallest letter size that Jared car read? Yes No Give a reason for your answer. [1] Data only exists down to 40. To extrapolate down to 30 assuming the same freed would
(ii) Jared is 30 years old. Should the scatter graph be used to estimate the smallest letter size that Jared car read? Yes No Give a reason for your answer. Data only exists down to 40. To extrapolate down to 30 assuming the same trend would
Should the scatter graph be used to estimate the smallest letter size that Jared carread? Yes No Give a reason for your answer. Data only exists down to 40. To extrapolate down to 30 assuming the same trend would
Give a reason for your answer. Data only exists down to 40. To extrapolate down to 30 assuming the same trend would
Give a reason for your answer. Data only exists down to 40. To extrapolate down to 30 assuming the same trend would
Data only exists down to 40. To extrapolate down to 30 assuming the same trend would
1.1/
1.1/
1.1/
be uncliable

© WJEC CBAC Ltd. (C300U10-1)

only

© WJEC CBAC Ltd.

(a) Simplify $5\sqrt{7} + 3\sqrt{7}$. $= 8 \sqrt{7}$	[1]
(b) Work out the value of $6+\sqrt[3]{8000}$. $\sqrt[3]{8}=2$ $20\times20=40^{\circ}$ So $6+20=26$ $400\times20=70^{\circ}$	[1]
(c) Work out the value of $3^{20} \div 3^{18}$.	[2]
= 3 ²	

© WJEC CBAC Ltd. (C300U10-1) Turn over.

20. A running club has 125 members.

Each member is either a sprinter, a middle-distance runner or a long-distance runner.

82 members are seniors.

45 members are long-distance runners and 5 of these are juniors.

28 members are senior middle-distance runners.

There are 3 more junior sprinters than senior sprinters.

A person is selected at random from the club.

Find the probability that this person is a junior middle-distance runner. Use this table to help you.

[5]

	Sprinter	Middle-distance runner	Long-distance runner	Total
Senior	1 4	28	40	82
Junior	17	21	5	43
Total	31	49	45	125

7.				
\$ 2	1/2 5	31		
- 68	82	49		
14	4 3	45		
		125		
	Proh =	21		
	Ko2 -	125		
	Probability	125	_	

© WJEC CBAC Ltd.

[1]

21. A company logo is printed on cards and letters.

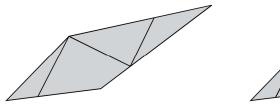


Diagram not drawn to scale

Each line in the larger logo has a corresponding line in the smaller one. The lengths of the corresponding lines are all in the ratio 5 : 2.

- Complete the following statement with a single mathematical word. [1] (a) 'The two logos are Similar because corresponding lines are in the same proportion.
 - Complete the following statement with a number. 'The larger logo is an enlargement of the smaller logo using a scale factor of2.5 5-2=2.5
- One of the lines on the larger logo is 7.5 cm long.

How long is the corresponding line on the smaller logo?	2]
7.5-2.5 = 3 om	

Turn over. (C300U10-1) © WJEC CBAC Ltd.

		9n-8	
(b)	(i)	The <i>n</i> th term of a different sequence is $3(n^2 + 1)$. Find the 10th term of this sequence. $3(10^2 + 1) = 3(101)$	[1]
		= 303	
	(ii)	Explain why 601 cannot be a term of this sequence. Do not find any more terms. 601 is not a multiple of 3, all terms	[1]
		will be multiples of 3.	

© WJEC CBAC Ltd.

Ξха	m	in	er
О	nl	٧	

23. A catering company made 40 trays of sandwiches for a party buffet. Each tray contained the same number of sandwiches.

They made trays of egg, trays of cheese and trays of meat sandwiches in the ratio

egg : cheese : meat = 1 : 3 : 4.

At the end of the party, 20% of the egg sandwiches, 10% of the cheese sandwiches and 25% of the meat sandwiches were uneaten.

How many trays of sandwiches were uneaten?

[4]

(+3+4=8

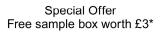
40-8=5

e : c : r

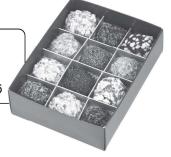
x⁵ () 5 : 15 : 20

20 / of 5 = 1

10% of 15 = 1.5

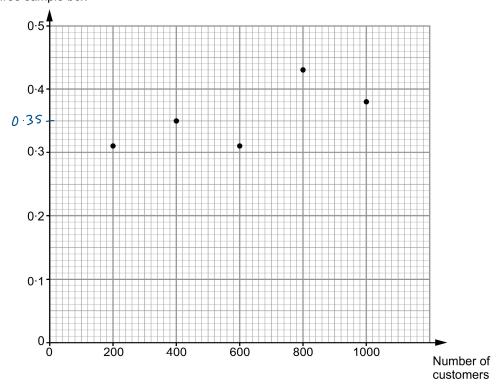

25% of 20 = 5 + 7.5

7.5 trays of sandwiches



© WJEC CBAC Ltd. (C300U10-1)

24. Novak's online chocolate company has a special offer.

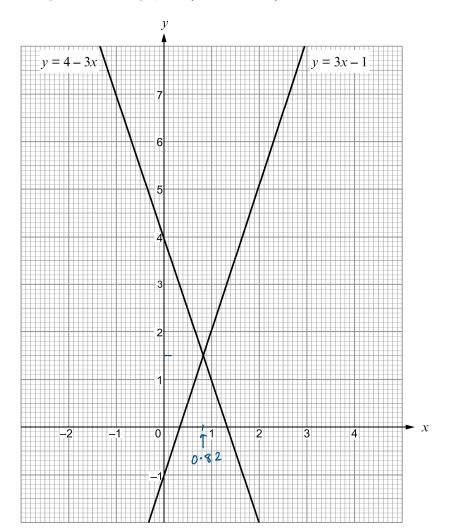

*requires a minimum spend of £25

Novak records the number of free sample boxes he sends to his customers.

The graph shows the relative frequency that a customer has been sent a free sample box after $200,\,400,\,600,\,800$ and 1000 customer orders.

Relative frequency of a customer being sent a free sample box

© WJEC CBAC Ltd.


	Number of boxes sent = 400 x 0.35		
	= 140		
 Ц	00 - 10 = 40 (10%)]		
T	. 5		
	20 (5%) (120 (30%))		
	(30%) 3		
		140	
	Cost = 140 x 3 = 420	3	
		420	
	_	1	
	Total value of free sample boxes is £ 420		
b)	Novak says: The most accurate estimate of the probability that		
b)	Novak says:		
	Novak says: The most accurate estimate of the probability that		
	The most accurate estimate of the probability that a customer will be sent a free sample box is 0.38.		
	The most accurate estimate of the probability that a customer will be sent a free sample box is 0.38. Is he correct?		[1]

© WJEC CBAC Ltd.

(C300U10-1)

[1]

25. (a) The diagram shows the graphs of y = 3x - 1 and y = 4 - 3x.

(i) Use the graphs to write down an **approximate** solution of the equation 3x - 1 = 4 - 3x.

x = 0.82

© WJEC CBAC Ltd.

(ii) Circle the equation that represents a line parallel to y = 3x - 1.

y = 3 - x

3y = x - 1

Circle the equation where y is directly proportional to x.

[1]

[1]

$$y = \frac{5}{x}$$

 $y = \frac{5}{x} \qquad \qquad x + y = 1 \qquad \qquad 7 = xy \qquad \qquad y = 3x^2$

$$7 = xv$$

$$y = 4x$$

END OF PAPER

© WJEC CBAC Ltd. (C300U10-1) Turn over.